Equation de Poisson


Equation de Poisson

Équation de Poisson

Page d'aide sur l'homonymie Pour les articles homonymes, voir Poisson (homonymie).
Articles d'analyse vectorielle
Champ vectorielChamp scalaire
Objets d'étude
Champ vectoriel Champ scalaire
Équation aux dérivées partielles
de Laplace de Poisson
Opérateurs
Nabla Gradient
Rotationnel Divergence
Laplacien scalaire Bilaplacien
Laplacien vectoriel D'alembertien
Théorèmes
de Green de Stokes
de Helmholtz de flux-divergence
du gradient du rotationnel

En analyse vectorielle, l'équation de Poisson est l'équation différentielle partielle suivante: \Delta\varphi=f , Ou bien :


{\partial^2 \over \partial x^2 }\varphi(x,y,z) +
{\partial^2 \over \partial y^2 }\varphi(x,y,z) +
{\partial^2 \over \partial z^2 }\varphi(x,y,z) = f(x,y,z)

c'est-à-dire qu'elle met le laplacien appliqué à \varphi égal à f.

Trouver \varphi pour un f donné est un problème pratique important en électrostatique, puisque c'est la méthode habituelle pour trouver le potentiel électrique pour une distribution de charges donnée :

\Delta V = - {\rho \over \epsilon_0},

ainsi qu'en gravitation universelle, où l'on relie cette fois le potentiel gravitationnel Φ à la masse volumique μ selon

ΔΦ = 4πGμ.

Sommaire

Résolution

Il y a diverses méthodes pour la résolution numérique. La méthode de relaxation, un algorithme itératif, est un exemple. Les méthodes basées sur les transformées de Fourier sont presque toujours utilisées en gravitation universelle.

Considérations historiques et essais de résolution

L'équation de Poisson est une correction célèbre de l’équation différentielle de Laplace au second degré pour le potentiel :

 \nabla^2 \phi = - 4 \pi \rho \; ,

On appelle aussi cette équation : l'équation de la théorie du potentiel publiée en 1813. Si une fonction d’un point donné ρ = 0, nous obtenons l’équation de Laplace :

 \nabla^2 \phi = 0 \; .

En 1812, Poisson découvrit que cette équation n’est valide qu'hors d’un solide. Une preuve rigoureuse pour les masses avec une densité variable fut d’abord donnée par Carl Friedrich Gauss en 1839. Les deux équations ont leurs équivalents en analyse vectorielle. L’étude des champs scalaires φ d’une divergence donne :

 \nabla^2 \phi = \rho (x, y, z) \; .

Par exemple, une équation de Poisson pour un potentiel électrique en surface Ψ, qui montre sa dépendance de la densité d’une charge électrique ρe dans une place particulière :

 \nabla^2 \Psi = {\partial ^2 \Psi\over \partial x^2 } +
                     {\partial ^2 \Psi\over \partial y^2 } +
                     {\partial ^2 \Psi\over \partial z^2 } =
                     - {\rho_{e} \over \varepsilon \varepsilon_{0}} \; .

La distribution d’une charge dans un fluide est inconnue et nous devons utiliser l’équation de Poisson-Boltzmann :

 \nabla^2 \Psi = {n_{0} e \over \varepsilon \varepsilon_{0}}
     \left( e^{e\Psi (x,y,z)\over k_{B}T} -
            e^{e\Psi (x,y,z)\over k_{B}T} \right) \; ,

ce qui, dans la plupart des cas, ne peut être résolu analytiquement, mais seulement pour des situations particulières. Dans les coordonnées polaires, l’équation de Poisson-Boltzmann est :

 {1\over r^{2}} {d\over dr} \left( r^{2} {d\Psi \over dr} \right) =
     {n_{0} e \over \varepsilon \varepsilon_{0}}
     \left( e^{e\Psi (r)\over k_{B}T} - e^{e\Psi (r)\over k_{B}T} \right) \; ,

laquelle ne peut pas non plus être résolue analytiquement. Même si le champ φ n’est pas scalaire, l’équation de Poisson est valide, comme elle peut l’être par exemple dans un espace de Minkowski à quatre dimensions :

 \square \phi_{ik} = \rho (x, y, z, ct) \; .

Si ρ(x, y, z) est une fonction continue et si pour r→∞ (ou si un point 'se déplace' à l’infini) une fonction φ va à 0 suffisamment rapidement, une solution à l’équation de Poisson est le potentiel newtonien d’une fonction ρ(x, y, z) :

 \phi_M = - {1\over 4 \pi} \int {\rho (x, y, z) dv \over r} \; ,

r est une distance entre l’élement avec le volume dv et le point M. L’intégration parcourt la totalité de l’espace. L’intégrale de Poisson en résolvant la fonction de Green pour le Problème de Dirichlet de l’équation de Laplace, si le cercle est le domaine étudié :

 \phi(\xi , \eta) = {1\over 2 \pi} \int _0^{2\pi}
     {R^2 - \rho^2\over R^2 + \rho^2 - 2R \rho \cos (\psi - \chi) } \phi
     (\chi) d \chi \; ,

où :

 \xi = \rho \cos \psi \; , \quad \eta = \rho \sin \psi \; .

φ(χ) est une fonction prescrite sur une ligne circulaire, qui définit les conditions aux limites de la fonction requise φ de l’équation de Laplace. De la même manière nous définissons la fonction de Green pour le problème de Dirichlet pour l’équation de Laplace Del.svg2 φ = 0 dans l’espace, pour un domaine constitué d’une sphère de rayon R. Cette fois la fonction de Green est:

 G(x,y,z;\xi,\eta,\zeta) = {1\over r} - {R\over r_1 \rho} \; ,

où :  \rho = \sqrt {\xi^2 + \eta^2 + \zeta^2} est une distance d’un point (ξ, η, ζ) depuis le centre d’une sphère, r une distance entre des points (x, y, z), (ξ, η, ζ), r1 est une distance entre le point (x, y, z) et le point (Rξ/ρ, Rη/ρ, Rζ/ρ), symmetrique au point (ξ, η, ζ). L’intégrale de Poisson est maintenant de la forme:

 \phi(\xi, \eta, \zeta) = {1\over 4 \pi} \int\!\!\!\int_S {R^2 - 
        \rho^2 \over R r^3} \phi ds \; .

Références

  • Poisson Equation at EqWorld: The World of Mathematical Equations.
  • L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998. ISBN 0-8218-0772-2
  • A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9


Liens externes

  • Portail des mathématiques Portail des mathématiques
  • Portail de la physique Portail de la physique
Ce document provient de « %C3%89quation de Poisson ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Equation de Poisson de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Équation de poisson — Pour les articles homonymes, voir Poisson (homonymie). Articles d analyse vectorielle …   Wikipédia en Français

  • Équation de Poisson — Pour les articles homonymes, voir Poisson (homonymie). En analyse vectorielle, l équation de Poisson (ainsi nommée en l honneur du mathématicien et physicien français Siméon Denis Poisson) est l équation aux dérivées partielles du second ordre… …   Wikipédia en Français

  • équation de Poisson — Puasono lygtis statusas T sritis fizika atitikmenys: angl. Poisson equation vok. Poissonsche Gleichung, f rus. уравнение Пуассона, n pranc. équation de Poisson, f …   Fizikos terminų žodynas

  • Equation de Poisson-Boltzmann — Équation de Poisson Boltzmann Pour les articles homonymes, voir Poisson (homonymie). L équation de Poisson Boltzmann est une équation qui apparaît dans la théorie de Debye Huckel des solutions ioniques. Cette équation permet de calculer le… …   Wikipédia en Français

  • Équation de poisson-boltzmann — Pour les articles homonymes, voir Poisson (homonymie). L équation de Poisson Boltzmann est une équation qui apparaît dans la théorie de Debye Huckel des solutions ioniques. Cette équation permet de calculer le potentiel électrostatique créé par… …   Wikipédia en Français

  • Équation de Poisson-Boltzmann — Pour les articles homonymes, voir Poisson (homonymie). L équation de Poisson Boltzmann est une équation qui apparaît dans la théorie de Debye Huckel des solutions ioniques. Cette équation permet de calculer le potentiel électrostatique créé par… …   Wikipédia en Français

  • Equation de Laplace — Équation de Laplace Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Équation de laplace — Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Equation aux derivees partielles — Équation aux dérivées partielles En mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles ou équation différentielle partielle (EDP) est une équation dont les solutions sont les fonctions inconnues vérifiant …   Wikipédia en Français

  • Equation de Lane-Emden — Équation de Lane Emden En astrophysique, l équation de Lane Emden décrit la structure d un objet dont l équation d état est celle d un polytrope, et qui est soumis à l influence de son propre champ gravitationnel. Il est de plus supposé que l… …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.